Filtering Nonlinear Feedback Shift Registers Using Welch-Gong Transformations for Securing RFID Applications

نویسندگان

  • Kalikinkar Mandal
  • Guang Gong
چکیده

Pseudorandom number generators play an important role to provide security and privacy on radio frequency identification (RFID) tags. In particular, the EPC Class 1 Generation 2 (EPC C1 Gen2) standard uses a pseudorandom number generator in the tag identification protocol. In this paper, we first present a pseudorandom number generator, named the filtering nonlinear feedback shift register using WelchGong (WG) transformations (filtering WG-NLFSR) for EPC C1 Gen2 RFID tags. We then investigate the periodicity of a sequence generated by the filtering WG-NLFSR by considering the model, named nonlinear feedback shift registers using Welch-Gong (WG) transformations (WGNLFSR). The periodicity of WG-NLFSR sequences is investigated in two ways. Firstly, we perform the cycle decomposition of WG-NLFSR recurrence relations over different finite fields by computer simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a WG transformation module. Secondly, we conduct an empirical study on the period distribution of the sequences generated by the WG-NLFSR. The empirical study states that a sequence with period bounded below by the square root of the maximum period can be generated by the WG-NLFSR with high probability for any initial state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Generation of Good Span n Sequences from Nonlinear Feedback Shift Registers

A binary span n sequence generated by an n-stage nonlinear feedback shift register (NLFSR) is a sequence with the randomness properties: period 2−1, balanced, and ideal n-tuple distribution. It is possible that it also has high linear span. For providing security in constrained environments such as RFID tags and sensor networks, a span n sequence generated by a nonlinear feedback shift register...

متن کامل

Periods on Two Kinds of nonlinear Feedback Shift Registers with Time Varying Feedback Functions

Grain and Trivium are the hardware-oriented finalists of the eSTREAM. They are both based on nonlinear feedback shift registers. In this paper, we study their generalized classes of nonlinear feedback shift registers with time varying feedback functions, namely, Grain-like and Trivium-like structures. Some interesting results regarding their periods are obtained.

متن کامل

On the cycle decomposition of the WG-NLFSR

Recently, Kalikinkar Mandal and Guang Gong presented a family of nonlinear pseudorandom number generators using Welch-Gong Transformations in their paper [6]. They also performed the cycle decomposition of the WG-NLFSR recurrence relations over different finite fields by computer simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a WG permutation....

متن کامل

Notes in Computer Science 4851

The filter generator consists of a linear feedback shift register (LFSR) and a Boolean filtering function that combines bits from the shift register to create a key stream. The nonlinear combiner generator employs several (LFSRs) and a Boolean function that combines bit from all the registers to generate the key stream. A new attack on the filter generator has recently been described by Rønjom ...

متن کامل

Warbler: A Lightweight Pseudorandom Number Generator for EPC C1 Gen2 Passive RFID Tags

A pseudorandom number generator is an important component for implementing security functionalities on RFID tags. Most previous proposals focus on true random number generators that are usually inefficient for low-cost tags in terms of power consumption, area, and throughput. In this contribution, we propose a lightweight pseudorandom number generator (PRNG) for EPC Class-1 Generation-2 (EPC C1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013